High-precision laser beam shaping using a binary-amplitude spatial light modulator.

نویسندگان

  • Jinyang Liang
  • Rudolph N Kohn
  • Michael F Becker
  • Daniel J Heinzen
چکیده

We have achieved high-precision laser beam shaping by using a binary-amplitude spatial light modulator, a digital micromirror device (DMD), followed by an imaging telescope that contains a pinhole low-pass filter (LPF). An error diffusion algorithm was used to design the initial DMD pixel pattern based on the measured input beam profile. This pattern was iteratively refined by simulating the optically low-pass filtered DMD image and changing DMD pixels to lift valleys and suppress peaks. We noted the gap between the experimental result of 1.4% root-mean-square (RMS) error and the simulated result for the same DMD pattern of 0.3% RMS error. Therefore, we deemed it necessary to introduce iterative refinement based on actual measurements of the output image to further improve the uniformity of the beam. Using this method, we have demonstrated the ability to shape raw, non-spatially filtered laser beams (quasi-Gaussian beams) into beams with precisely controlled profiles that have an unprecedented level of RMS error with respect to the target profile. We have shown that our iterative refinement process is able to improve the light intensity uniformity to around 1% RMS error in a raw camera image for both 633 and 1064 nm laser beams. The use of a digital LPF on the camera image is justified in that it matches the performance of the pinhole filter in the experimental setup. The digital low-pass filtered results reveal that the actual optical beam profiles have RMS error down to 0.23%. Our approach has also demonstrated the ability to produce a range of target profiles as long as they have similar spatial-frequency content (i.e., a slowly varying beam profile). Circular and square cross-section flat-top beams and beams with a linear intensity variation within a circular and square cross section were produced with similarly low RMS errors. The measured errors were about twice the ultimate limit of 0.1% RMS error based on the number of binary DMD pixels that participate in the beam-formation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maskless Microscopic Lithography through Shaping Ultraviolet Laser with Digital Micro-mirror Device

Laser shaping was introduced to maskless projection soft lithography by using digital micro-mirror device (DMD). The predesigned intensity pattern was imprinted onto the DMD and the input laser beam with a Gaussian or quasi-Gaussian distribution will carry the pattern on DMD to etch the resin. It provides a method of precise control of laser beam shapes and photon-induced curing behavior of res...

متن کامل

Independent Phase and Amplitude Control of a Laser Beam Using a Single-Phase-Only Spatial Light Modulator

LLE Review, Volume 96 225 Laser-beam shaping is a rapidly developing field of research driven by both technological improvements of beam-shaping devices and the ever-increasing demands of applications. In high-energy laser chains, efficient beam shaping is successfully achieved in the front ends by passive methods such as beam apodization1 or intracavity mode shaping;2 however, these static tec...

متن کامل

The generation of flat-top beams by complex amplitude modulation with a phase-only spatial light modulator

Phase-only spatial light modulators are now ubiquitous tools in modern optics laboratories, and are often used to generate so-called structured light. In this work we outline the use of a phase-only spatial light modulator to achieve full complex amplitude modulation of the light, i.e., in amplitude and phase. We outline the theoretical concept, and then illustrate its use with the example of t...

متن کامل

Radially polarized Yb-fiber MOPA producing 10 W output using SLM based pulse shaping for efficient generation of arbitrary shaped picosecond pulses

We demonstrate beyond 10W simultaneous temporal and spatial pulse-shaping on a picosecond fiber laser system. Our proposed technique can substantially enhance the capability and efficiency of the existing ultrashort fiber laser systems for high precision material processing. OCIS codes: (140.0140) Lasers and laser optics; (140.3070) Infrared and far-infrared lasers; (140.3300) Laser beam shapin...

متن کامل

Femtosecond pulse shaping using spatial light modulators

We review the field of femtosecond pulse shaping, in which Fourier synthesis methods are used to generate nearly arbitrarily shaped ultrafast optical wave forms according to user specification. An emphasis is placed on programmable pulse shaping methods based on the use of spatial light modulators. After outlining the fundamental principles of pulse shaping, we then present a detailed discussio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 49 8  شماره 

صفحات  -

تاریخ انتشار 2010